Peter A. Corning, Ph.D.
It has always seemed to me ironic that we are surrounded and sustained by synergistic phenomena—combined (or “co-operative”) effects that can only be produced by two or more component parts, elements or individuals—yet we do not, most of us, seem to appreciate its importance; we take its routine miracles for granted. Nor do evolutionists, for the most part, seem to recognize the important causal role of synergy in the evolutionary process, despite the fact that we depend upon it in a myriad of ways for our survival and reproductive success, and so do all other living things. Synergy is literally everywhere around us, and within us; it is unavoidable. Here are just a few examples:
* About 2,000 separate enzymes are required to catalyze a metabolic web. But if you were to remove one of the more critical of these enzymes, say the hexokinase that facilitates glycolysis, the process would not go forward.
* Water has a unique set of emergent, combinatorial properties that are radically different from those of its two constituent gases. But if you simply mix the two gases together without a catalyst like platinum, you will not get the synergy.
* Our written language, with well over 300,000 words, is based on various combinations of the same 26 letters. Thus, the letters “o,” “p” and “t” can be used to make “top”, “pot”, “opt” and “p.t.o.” (paid time off). But if you remove the vowel, there will be no “pattern recognition” in the reader’s mind.
* The humble clay brick can be used to make a great variety of useful structures—houses, walls, factories, jails, roads, watchtowers, fortifications, even kilns for making more bricks. Truly a synergistic technology. But without mortar and human effort (and a plan), you will have only a pile of bricks.
* A modern automobile is composed of roughly 15,000 precisely-designed parts, which are derived from some 60 different materials. But if a wheel is removed, this incredible machine will be immobilized.
* The African honey guide is a bird with a peculiar taste for bees’ wax, a substance that is more difficult to digest even than cellulose. Moreover, in order to obtain bees’ wax, the honey guide must first locate a hive then attract the attention of and enlist a co-conspirator, the African badger (ratel)(Mellivora capensis) . The reason is that the ratel has the ability to attack and dismember the hive, after which it will reward itself by eating the honey while leaving the wax. However, this unusual example of co-operative predation between two different species in fact depends upon a third, unobtrusive co-conspirator. It happens that honey guides cannot digest bees’ wax. They are aided by a parasitic gut bacterium which produces an enzyme that can break down wax molecules. So this improbable but synergistic feeding relationship is really triangular. And, needless to say, the system would not work if any of the partners, for whatever reason, withdrew (Bonner, 1988).
* Economist Adam Smith’s classic description in The Wealth of Nations (1776) of an eighteenth century pin factory is often cited as a paradigm example of the “division of labor.” Smith observed that 10 laborers, by dividing up the various tasks associated with making pins, were able collectively to produce about 48,000 pins per day. However, Smith opined that if each laborer were to work alone, doing all of the tasks independently, it was unlikely that on any given day the factory would be able to produce even a single pin per man.
The Ubiquity of Synergy
Synergy is clearly not a peripheral phenomenon associated only with drug interactions or corporate mergers. Though it often travels in disguise, synergy can be found in the subject-matter of most, if not all of the academic disciplines. In physics, it is associated with the behavior of atoms and subatomic particles, as well as with superconductivity, synchronous light emissions (lasers) and such esoteric molecular phenomena as scale effects—the “broken symmetries” highlighted in physicist Perry Anderson’s classic article “More is Different” (1972). Indeed, the periodic table of elements is a monument to the many forms of synergy that are responsible both for the naturally occurring stable elements and for the more unstable or even transitory creations of modern physics; various combinations of atomic building-blocks produce substances with very different “emergent” properties. Even the “chaotic” phenomena which have been the subject of intensive research by physicists and mathematicians in recent years exhibit many forms of synergy.
Biochemistry and molecular biology are also rife with synergy. Living matter (at least in the form we know it) is composed mainly of a few key constituents—carbon, oxygen, hydrogen, nitrogen and energy. In various configurations these constituent parts have produced a wondrous array of emergent products, perhaps 10-20 million different species—nobody really knows. By the same token, as we all know, the DNA that is used to write the genetic code consists of only four nucleotide “letters.” With this modest alphabet, evolution has been able to fashion a human genome with perhaps 100,000 genes. During ontogeny, our genome is able co-operatively to fabricate an incredibly intricate emergent product composed of an estimated 500 trillion cells of about 250 different types.
Many individual organisms, from bacteria to humans, also engage in internal or external symbiosis—synergistic relationships with “dissimilar” organisms—a subject that will be discussed in more detail below. Sociobiologists, likewise, have documented numerous behavioral synergies among members of the same species, from co-operative foraging and hunting activities to co-operative defense, reproduction, environmental conditioning and even thermoregulation. (More also about sociobiology below.)
In the social sciences, synergy can be found in many of the phenomena studied by economists—from market dynamics (demand-supply relationships) to economies of scale, the division of labor and, of course, the influence of technology. Psychologists also deal with synergistic effects, ranging from gestalt phenomena to social facilitation, group “syntality”, mob psychology and cult behavior. And political scientists observe synergistic effects in voting processes, interest group activity, coalition behavior, and a host of organizational phenomena, among other things.
The computer sciences are also grounded in synergy. There is, for example, the microscopic complexity of Intel’s Pentium microprocessor, which embodies the equivalent of 3.1 million transistors in a substrate that is about 2.17 inches square (it varies with the temperature). There is also the current generation of word processing software, which utilizes—synergistically—about two million separate lines of programming code, or instructions. Or consider the multi-leveled synergy that occurs when a computer and its software are combined. We know that the result is synergistic because we also know what happens when the two are not combined, or when the computer and software are incompatible. Similarly, massively parallel computers, which in effect exploit the synergies associated with a division of labor and hierarchical control, offer performance improvements that are many orders of magnitude greater than what can be achieved by conventional sequential processing technology.
The Synergism Hypothesis
What is the principle underlying such mundane forms of magic? It is not magic at all, of course, but a fundamental characteristic of the material world that things in various combinations, sometimes with others of like kind and sometimes with very different kinds of things, are prodigious generators of novelty. And these novel co-operative effects have over the past 3.5 billion years or so produced at every level of life distinct, irreducible “higher levels” of causation and action whose constituent “parts” have been extravagantly favored by natural selection. Furthermore, in many instances these emergent wholes have themselves become parts of yet another new level of combined effects, as synergy begat more synergy.
The formal hypothesis is that synergistic effects of various kinds have been a major source of creativity in evolution (see Corning, 1983); the synergism hypothesis asserts that it was the functional (selective) advantages associated with various forms of synergy that facilitated the evolution of complex, functionally-organized biological and social systems. In other words, underlying each of the many particular steps in the complexification process, a common functional principle has been at work.
The Self-Organization Paradigm
The recently developed theories of self-organization would seem to be orthogonal to this functionalist, selectionist theory. Mathematical modelling work in biophysics, utilizing a new generation of non-linear partial differential equations, has produced a radically different hypothesis about the sources of biological order. As articulated by Stuart Kauffman in an important new synthesis (Kauffman, 1993), much of the order found in nature may be “spontaneous” and autocatalytic—a product of the generic properties of living matter itself. Kauffman envisions a new physics of biology in which the emerging natural laws of organization will be recognized as being responsible both for driving the process and for truncating the role of natural selection. Natural selection in Kauffman’s paradigm is viewed as a supporting actor.
This article will explore the relationship between synergy and self-organization in some detail in the hope of shedding additional light on how complex systems have evolved and how they may be expected to continue doing so over the course of time. The relevance of these two major theoretical paradigms to the process of human evolution will also be briefly discussed.